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It is shown that the direct correlation function of a mixture of hard ions in the 
mean spherical approximation (MSA) can be expressed in terms of overlap 
functions of charged spherical shells. In particular, if the system is a mixture 
of pairs of ions of equal size and opposite charge, then the MSA direct correlation 
function is given by the electrostatic energy of a pair of charged shells, of radius 
equal to the radius of the hard ion plus 1/(2F). This direct correlation function 
can be derived from a free energy functional, and a simple extension to 
nonuniform systems is given. 

KEY WORDS: Ionic fluids; mean spherical approximation; inhomogeneous 
fluids; scaled particle theory. 

1. I N T R O D U C T I O N  

It  is with grea t  p leasure  that  we cont r ibu te  this paper  to the issue in h o n o r  
of Jerry  Percus,  t ruly one of the founding fathers of mode rn  l iquid theory.  
The  research descr ibed below has or ig ina ted  from one of Jerry 's  seminal  
papers  (1) and  discusses an app l i ca t ion  to ionic fluids theory,  also p ioneered  
by him. (2'3) 

L iqu id-s ta te  theories like the M S A  and the H N C  can be der ived as 
var ia t iona l  p rob lems  of the free energy functional ,  which is wri t ten in terms 
of the O r n s t e i n - Z e r n i k e  direct  cor re la t ion  funct ion and in terpola tes  
between the low-coupl ing  M a y e r  and h igh-coupl ing  Onsager  limits. This 
view, as recently t aken  by one of us, ~4-6) for systems of ha rd  objects  in 
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general, and hard spheres in particular, uncovered interesting relations 
between the grand potential, the direct correlation function, and the scaled 
particle theory. In this work we begin to extend this analysis to the case of 
charged hard spheres in general, and the primitive model of electrolytes in 
particular. 

The asymptotic limit of strong Coulomb interactions between the charged 
particles, that is, the limit in which either the charge goes to infinity or the 
temperature goes to zero, is the starting point of our present discussion (79~: 
The free energy and the internal energy diverge to the same order in the 
coupling parameter, while the the entropy diverges at a slower rate. In this 
asymptotic limit, the free energy and the energy coincide, and furthermore, 
the mean spherical approximation (MSA) and the hypernetted chain 
approximation (HNC) coincide. This is a very gratifying feature, because 
the HNC, which from the diagram expansion point of view (and numerous 
test cases) is the more accurate theory, is in general difficult to solve 
numerically, while the MSA is analytical in most cases, and in the 
asymptotic limit, of a rather surprisingly simple form. In the asymptotic 
limit the excess electrostatic energy is identical to the exact Onsager lower 
bound, which is achieved by immersing the entire hard-core system in an 
infinite neutral and perfectly conducting (liquid metal) fluid. The Onsager 
process of introducing the infinite conductor naturally decouples all the 
components in the system which may differ in size, shape, charge distribu- 
tion, and relative orientation in space. As a result, the variational free energy 
functional in the high-coupling limit diagonalizes, and the mathematical 
solution of the asymptotic problem is given in terms of geometrical properties 
of the individual particles in the system. 

As an illustration, consider the charges induced on the surface of each 
particle when placed in an infinite conductor. Then the direct correlation 
function in the asymptotic strong-coupling limit (Onsager picture) is 
obtained directly from the electrostatic interaction of the charges of the 
particles smeared on the surface of those particles. The calculation of the 
bridge function (the part missing in the HNC approximation) involves the 
construct of Onsager molecules for the potential of mean force. Another 
asymptotic limit is the high-density limit, in which the compressibility tends 
to zero because of the tight packing of the particles. In this case the MSA 
solution is also obtained from a simple geometric argument by computing 
the overlap volume of the particles as a function of their distance and their 
relative orientation. These two distinct limits provide the set of basis 
functions for the representation of the direct correlation function, which 
can be shown to be sufficient to represent the dcf of the complete MSA 
solution. In other words, these two limits provide the full functional basis 
set for the exact solution of the MSA equations and also an asymptotic 
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approximation of the HNC solution for all densities and temperatures, for 
hard charged objects. This enables us to replace a functional variational 
problem by a variational problem in which the basis functional set is fixed, 
and known, and where we only need to find the weights of the basis functions. 
The asymptotic Onsager state of the system is essentially the analog of the 
diagonalizable reference Hamiltonian of quantum mechanics when the 
Schr6dinger equation has to be solved. In our case the basis functions for 
the functional expansion of the direct corelation function are obtained from 
linear combinations of overlap functions, such as the volume, the surface, 
and the convex radius, and the electrostatic interaction between surface 
smeared charges. The full solution is obtained by associating free 
parameters with various parts of the basis functions. By proper manipula- 
tion of the free parameters, and by a judicious selection of the basis set of 
trial functions, one can obtain, as in quantum mechanics, different levels of 
approximations. The physically intuitive meaning of the basis functions in 
the representation of the dcf is particularly illuminating in the formulation 
of perturbation treatments. The use of the asymptotic basis set of functions 
ensures that at all levels of the perturbation approximation, the resulting 
free energy has the desired property of interpolating between two exact lower 
bounds, the Debye-H/ickel result (which is effective at weak coupling) and 
the Onsager result (which is effective at high coupling). These two limits 
pin the free energy. 

The Onsager approach to charged hard-particle systems, as outlined 
above, has been developed for plasmas of various kinds (charges of one 
sign, with no hard-core excluded-volume constraints, and in a uniform 
neutralizing background of opposite sign), and for uncharged hard-particle 
systems in both the uniform and nonuniform cases. These two cases 
provide the basis for the treatment of the more general case of the charged 
hard-particle system. As it has been shown in the case of the nonuniform 
hard particles, this new approach provides an excellent starting point for 
the quantitative discussion of inhomogeneous uncharged hard-sphere 
systems. (5'6/ The interpolation between the low- and high-density limits, 
which is inherent to this variational approach, leads in a very natural way 
to the scaled particle (1~ theory for the structure and thermodynamics of 
isoptropic fluids of hard particles. 

A free energy density functional for the inhomogeneous hard-sphere 
fluid was constructed, based on fundamental geometric measures of the 
particles. It provides the first unified derivation of the most comprehensive 
analytic description available of the hard-sphere thermodynamics and pair 
distribution functions as given by the Percus-Yevick and scaled particle 
theories, and yields simple explicit expressions for the higher direct 
correlation functions of the uniform fluid. 
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The present work makes the first step in extending this approach to 
charged hard spheres. Following the steps of the above theory for neutral 
hard spheres, we show that the seemingly complex dcf for the MSA of ionic 
mixtures obtained by Hiroike (11) can be written in terms of the basis 
functions mentioned above. We then provide more insight into the nature 
and physical meaning of the solution as represented in the resulting free 
energy. Finally we point out possible directions along which free energy 
models of the inhomogeneous fluid can be constructed. 

2. DIRECT CORRELATION FUNCTIONS IN T E R M S  OF 
G E O M E T R Y  A N D  ELECTROSTATICS 

We consider an arbitrary mixture of charged hard spheres. The general 
solution of the MSA (12) yields simple expressions for the thermodynamics 
and pair correlation functions. The dcf was obtained by Hiroike(~l): For a 
system of hard spheres of radius Ri = aft2, charges z~, and number density 
pi = Jg;ffV, the dcf cu(r) can be written 

where 

% ( r ) =  Hs ohargo, , C o. (r) + 7oCv tr) (1) 

e 2 

7o - eokB T (2) 

is the Landau length of the system, measuring the relative importance of 
the electrostatic contributions. When 7o = 0, that is, when either the dielectric 
constant eo or the temperature T go to oo, or when the charges are shut 
off by formally letting the electron charge e to be zero, the system 
corresponds to a neutral uncharged hard-sphere mixture for which the dcf 
Hs c o. (r) is that of the Percus-Yevick theory. An important step in constructing 

a free energy model for the hard-sphere mixture begins by casting the 
known HS Cii (r) in geometric form (4) 

- c H S ( r ) = z ( 3 )  A V ~ ( r ) +  z(2) A S o ( r ) +  x(1) A R y ( r ) +  x(~ (3) 

obeying the MSA closure 

H S  cij (r > Ri + R s) = 0 (4) 

For two spheres of radii R i and R s at a distance r, A Vo(r ) is the 
overlap volume, ASij(r) is the overlap surface area, 
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ARiy(r) = O [ r -  (Ri + Rj) ][ Ri + Rj - (mean radius of convex 

envelope of the union of two spheres)] 

zlSo.(r) RiRj  
- 4~r(R, + Rj) ~- O[r - (R~ + Ry)] R, + Rj' 

and Oij(r) = O [ r -  (R i+  R)]. 

with 

(5) 

8 q ~ I a S [ ( ~ m ) ]  
Z q --  (6 )  

where 

1 
Z (~ - (7) 

1 - ~ 3 '  

Z(1)  -- ~2  
( 1 _  ~3) 2 , (8) 

r ( 1 /4~ )~  2 

•(2)_ (1 --  ~3) ~ + (1 -- ~3) ~ '  (9) 

Z(3)_ ~o 2~1~2 ( ~ ) ~ 3  1 (10) 
(1  - -  ~ 3 )  ~ "~ (1 - ~ 3 )  ~ - ' - - - ' ~  + 7g 2 (1 - ~ 3 )  4 '  

are the inverse compressibility coefficients in the expansion 

Zi ---- 2 Z q[ (~m)]  Rq = a(P/kB T) (11) 
8pi q 

and ~q  a r e  the fundamental measure variables 

~q = 2101Rq ( 1 2 )  
q 

with R q = Vi, S .  R .  l for q - 3 ,  2, 1, 0, respectively. 
Our first step is to rewrite the dcf of the MSA as written by Hiroike 

in terms of the geometric and/or electrostatic forms, for the charge part 
ccha~ge(r) We shall present expressions for core overlap configurations /J \ �9 
r-%< (R~ + Rj), recalling that the MSA closure is 

charge," ~ --ZiZj c~y t r y -  , r > R i + R j  (13) ?" 
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After some manipulations, Hiroike's dcf can be cast in the form 
charge c a (r) = (4/n)q 2 AVv(r)  

+ 4RiRj [tl(Xi + Xj) - N, Nj] ~o(r) 

+ 2(N~Xj-tla~Xj) O~(r) (14) 

where 7~(r) is the electrostatic interaction of two charged hard spheres of 
unit charge smeared on the surface. The spheres are of radius R~, Rj and 
they are separated by a distance r. The other parameters of the direct 
correlation functions are given in terms of a scaling parameter 1,/12) the 
sizes and charges of the hard spheres, and their concentrations. A new 
system parameter q, is defined by 

r l = ~  i P i a i z i [  1 ] .  (15) 
�9 1 + r~ri L(2 /~ ) (1  - ~ 3 ) + Z j  I-p,~3/(1 + v . j ) ]  

This parameter is related to the symmetry of the solution: In the restricted 
case, in which all the diameters of the ions are equal, t /= 0. A less restrictive 
case, in which pair of ions have the same diameter, which, however, may 
change from pair to pair, also yields q equal to zero. In terms of these 
parameters we get 

z ' - t l a~  (16) 
X i -  1 +Fa~ 

Fzi + rlai (t7) 
N i -  - 1 +Fa  i 

The important single parameter of the solution is the capacitance length 
(2F) - 1 =  2c, whose role and name will become apparent when we will 
discuss the thermodynamics of the system in the next section. Before we 
proceed, however, note that the prefactor of O 0 in Eq. (14) is also 
symmetric, 

- a  ~Xjt 1 + NiX,  = - (t/a,Xj + tlajX ~ + FXjX,)  (18) 

Unlike the case of the neutral hard spheres, where there is a unique way 
of writing down the dcf, because of the fact that ~ ( r )  can be written as 
a linear combination of the geometric overlap functions, there is no unique 
way to perform the factorization of the charge dcf. This is in part one of 
the technical problems that need to be overcomed. Specifically, the following 
relations are true: 

RiR  j ~tij(Ri, Rj; r )= (R i + di)(R j + aj) ~[tij(R i + di, Rj + dj; r) 

{ - d i ,  r < R j - R i  (19) 
- (d~ + g ) / 2 ,  r > R j  - R ,  
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for any positive di, dj, 

Tu(Ri , 'R j )  = A R o =  
R , R  s 

and 

A S  U 0 o 
§ (20) 

4rcRiR](R ,+R/ )  R , + R z  

2 ( N I X , -  ~la,X]) - - (2Nj)(2N~)2F + (2qay)(2t/a,)2F (21) 

We can also write for core overlap configurations 

4[q(X, + Xj) - N, Nj-] 
charge - -  4 rl 2 A V~(r) + A S  0 (r) 

cij (r) - 7 4~(Ri + Rj) 

x~x; 
+ O~;(r) (22) 

R, + Rj 

or, if we take into account the boundary condition of the MSA Eq. (13) 
and in view of the Onsager limit, we can write 

charge c o ( r )=  - z i z j T o ( r ) + 4 - r l 2 A V i ] ( r )  

4 [~/(X, + Xj) - N iNj]  
4~R,Rj(R,+ Rj) ~So(r) 

~zj x, xj OAr) (23) +RT R0(r)+R,+Rj 
Recalling the results for uncharged hard spheres, we see that indepen- 

dently of the particular decomposition in terms of geometric electrostatic 
basis "weighted densities" characterizing the geometry of individual 
particles play the same vital role in the present "charged" case. In the 
uncharged case we had the scaled particle theory as a guide, and we 
followed the MSA-compressibility route to the thermodynamics. For the 
"charge part" we must follow the energy route, so that the result is in a 
mixed representation, which is more cumbersome. 

3. T H E R M O D Y N A M I C S :  I N T E R P O L A T I O N  BETWEEN 
THE O N S A G E R  A N D  D E B Y E - H O C K E L  LOWER B O U N D S  
FOR THE FREE ENERGY W I T H  A V A R I A T I O N A L  
C A P A C I T A N C E  LENGTH 

We denote by 
A charge = A - A Hs (24) 
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the contribution of the charge to the Helmholtz free energy of the system, 
in our case, the general mixture of hard spheres. The following relations 
hold for the MSA: 

UCharge/N (t/2) I ~  " charge 1 (25) = p,c, ,  (O)/p + z charg~ 

where U/N is the potential energy per particle, and Z is the inverse 
compressibility, [8(P/kBT)/Sp]r,  obtained from the direct correlations 
function, and 

Fcharge/N = U charge -t- 1/2Z charge - -  flPexCharge/p (26) 

where F is the excess free energy obtained from the "energy" way, that is, 
integrating U=fl  8F/c?fl, and P~x is the pressure obtained from the 
thermodynamic relation f lPex /P  = P ~?(Fex/N)/~?p. We also use the definition 
q~ = p f =  F/V, the excess free energy per unit volume. The following results 
were obtained: 

Z charge = - -  (4/rc)r/2yo (27) 

Echarge 
- N  - 7 o ~ P i \ ~ + I + F G ]  (28) 

flecharge = __(F3/3TC q_ 2t/270/TZ) (29) 

~charge = Echarge + kB TFB/3rc (30) 

where the parameters F and t/are determined from 

(z_. 27 
I~2 = T~O E Pi l ~ F f f i /  (31)  

i 

and ~/was defined previously, Eq. (15). 
Consider first the case when t/= 0. We make the following observa- 

tions: 

(a) The potential energy (28) is given by the sum of the self-energies 
of spherical capacitors, with an effective characteristic radius b~. In fact, 

Echarg e __ U 

where the capacitance is 
1 

Ci = bi = Ri + 2~ 

(32) 
2C~ 

(33) 

and N~ is the number of ions i. 
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(b) The capacitance length, the MSA analog of the Debye length, is 
2 ~ -  1/(2F), and is found by optimizing the free energy 

(~charge  
= 0  (34) 

0F 

which turns out to be exactly equivalent to Eq. (31), also in the more 
general case in which q r 0. 

These results reveal the physical meaning of the MSA solution as an 
interpolation between two exact lower bounds, the Debye lower bound, 
effective when 7o--* 0, and the Onsager bound, effective for 7o ~ oo. This 
interpolation is achieved by a variational free energy functional, which has 
the parameter 2c= 1/(2F), the capacitance length, as the variational 
parameter. With hindsight we can construct the MSA solution for r/= 0 
using only dimensional analysis, as follows: (a) Write the excess free energy 
density in the general form 

(/)charge = ])00~t(~c) _~_ S(.~c ) ( 3 5 )  

where the expression for the energy density 

if2 ~2 

7oql - 2eokBT~i PiRi+2~ c (36) 

defines the role of this system averaged length scale 2c, and where we have 
assumed that the entropy term S(2c) depends only on 2 c. This is an 
important assumption, and as a result, and in order to have the correct 
dimensionality of [q~], we write 

S(2c) = AJ~c 3 (37) 

where A is a constant to be determined by adjusting the behavior at low 
concentrations to the Debye Hiickel picture. The variational equation 
(34), 0~cha~gr = 0, yields 

1 e 2 z2 

)~-4 = 6A 8ok B T . Pi (R i+-2c)2 (38) 

In the limit 7o we expect the Debye-Hfickel result to hold. This limit 
corresponds to 2c --* 0% which yields 

1 e 2 

,~ -2  = __ 6--A 80k B T ~ ~ p~z2 (39) 

from which we see that A = 1/24zr. 
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For uncharged hard spheres we have already gained enough insight to 
enable us to derive the complete solution of the MSA (which is really the 
Percus-Yevick hard-sphere approximation) directly from the functional 
free energy model with a limited basis function set. It is very desirable to 
have a similar model for charged hard particles. This will have important 
consequences also for plasmas. Analysis of the uncharged case revealed the 
particular fine tuning which happens to occur only in three dimensions to 
be able to satisfy the core condition g(r < Ri + R/) -- 0 exactly. So, although 
it will be very nice if eventually we understand how to obtain it from a free 
energy model, we can also gain insight from the MSA solution in order to 
explore the free energy models for inhomogeneous systems. 

4. FREE E N E R G Y  M O D E L S  FOR N O N U N I F O R M  M I X T U R E S  
OF C H A R G E D  H A R D  S P H E R E S  

The Helmholtz free energy F is the sum of two contributions, a term 
due to the excluded-volume effects of the hard spheres F Hs and the charge 
term F charge, which usually will include cross terms of charge and excluded 
volume (cavity effects), 

F =  F Hs + F MsA (40) 

Similarly to the hard-sphere term that was discussed in detail in the 
original work of Rosenfeld, (4'6) the "charge" term can be written, for the 
general inhomogeneous system, 

= f dr1 (i0charge(rl) (41) FMSA 

where ~i0charge(r) is the local Helmholtz free energy per unit volume. The 
mean spherical approximation (MSA) yields in the homogeneous bulk 
phase(1M3~ 

~charge +~ I~MSA = Echarge _.~ ka TFa/3rc (42) 

The parameter q, Eq. (15), is generally small for ionic solutions, and is zero 
for the restricted case of ions of only one diameter, and also when neutral 
pairs of ions are of the same size. The parameter F is obtained from the 
optimization condition 

~charge 
- -  - 0 ( 4 3 )  

0F 

which, after some algebra, turns out to be exactly equivalent to the equation 
obtained directly from the boundary conditions of the MSA. llz'13/ The 
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energy in the MSA is the sum of the energies of spherical capacitors of 
capacitance (14) C~ = b i also for nonprimitive models of electrolytes. 

Consider the total internal energy 

= f dr I EMSA(rl) (44) uMSA 

where EMSA(rl) is the local internal energy. 
Consider now the interaction of two charged shells of radii b~, bs, with 

centers at positions rl ,  r 2. From simple electrostatics we know that 

~i,j(bi, bj;r12)=(1/2) f dr3qi(rl-r3)~j(r3-r2), r 1 2 = r l - r ~  (45) 

where the electrostatic potential ~b is defined by 

(, 
q~j(r32 ) = j dr4 

The charge density of the shells is 

q j ( r 4 )  

Ir32-r41 
(46) 

Zi qi(r) = ~ 6(Jrl - bi) (47) 

The total energy is approximated by 

= -(1/2)70 f dr~ f dr2 Z Dr(r1) pj(r2) ~Ji.J (hi, bj; r12 ) (48) flu~SA 
i , j  

Consider again the interaction of the spherical shells, Eq. (45): When 
they overlap we get 

~i,~(b/, bj; r) = ~  [(b~-bj)2-2r(bi+bj)+r 2] (49) 

If we rearrange this expression, we obtain 

flU MsA = -(1/2)7o f dr 3 ~ Qi(r3) qbj(r3) (50) 
l, j 

where 

Q,(r3) = f drl  p,(rl)  q,(rl - r3) (51) 
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and 

~J(r3) = I dr2 Ps(r2) ~s (r3 - r2) (52) 

For uniform systems, Eq. (50) is just equal to the starting equation (28). 
In fact, simple integration of Eqs. (51) and (52) with Eq. (48) yields 

Qi(r3) = z,p~ (53) 

and 

~j(r~) = -2Nj  (54) 

(assuming ~/= 0). 
We recall now the relation between the Helmholtz free energy and the 

direct correlation function 

MSA" r2) -~ O2flFMSA 
Ci, j trl, 6pi(rl) 6pj(r2) (55) 

Functional differentiation will yield 

cMSA/r i,j t 1, r2)---- (l/2)7o~Ui, s(bi, bj; r12 ) (56) 

which is equal to the direct correlation function first derived by Hiroike (11/ 
for t t = 0, but considerably simpler. 

Equation (56) is a possible extension of the MSA direct correlation 
function to inhomogeneous systems. To a first approximation we may take 
the bulk value of F, although refinements are possible. The pair correlation 
functions which are computed from the Ornstein-Zernike equation can be 
shown to satisfy the local electroneutrality condition. (15) 

Recall that the MSA direct correlation function can be written as 
convolutions, Eqs. (3) and (22), which suggest forms based on generaliza- 
tions of the hard-sphere formalism, (5/ 

FIaS/VkB T =  f dr qS[ {n~(r) } 3 (57) 

where n~(r) are the system-averaged fundamental measures of the particles. 
For example, 

n2(r) = ~ f dr1 p,(rl) 6(Ir - r 11 - Ri) (58) 
i 
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represents the system-averaged density, i.e., 

~o12)(r) = 6(Jr] - Ri) (59) 

represents the characteristic function for the surface of a sphere of radius 
Ri, centered at the origin. 

We introduce now the characteristic functions for spheres of displaced 
radius bi, Eq. (33), 

o~(2)~r~ - 6(IrJ - bi)  ( 6 0 )  b~ \ 1 - -  

and corresponding weighted charge densities 

n~(r )  = S f dr, pi(r,) z i ~ ' ( r  - r,) (61) 
i 

We remark that now the internal energy (44) can be written 

n~(r) n~(r,) fluMSA= f dr* f dr ]r~- r,--] {62) 

and will also yield Eq. (56) upon functional differentiation. [Note that 
Eq. (62) still needs further adjustments to the uniform limit, for the case 
~0. ]  

The forms (48) and (62) represent two possible free energy functional 
forms which follow from the convolution geometric picture of the MSA 
solution for the pair direct correlation function (dcf). Other generic forms 
are possible in view of the different equivalent forms for cij, as given in 
Section 3. Having the uniform fluid dcf's in a geometric form enables us to 
build a "weighted density" approximate free energy functional for the 
nonuniform fluid which is either (i) tailored to the detailed analytic properties 
of the uniform limit, or (ii) derives the uniform limit from more general 
principles. Both these possibilities are advantageous with respect to the 
usual applications of the weighted density ideas. Stage (ii) was already 
achieved for the hard spheres, while the "charge part" of the problem is still 
in stage (i), as represented in the example above. From the results of 
Section 2 and the Rosenfeld derivation of the functional for nonuniform, 
hard spheres, it seems that many (if not all) details of the Hiroike dcf of 
the MSA can be obtained directly from Eq. (55), by imposing several 
constraints on a generic form for the free energy functional. For example, 
one may seek the extensions to nonuniform systems of the simple interpola- 
tion formulas of Section 3. 
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